溫江金馬街高一文綜補(bǔ)習(xí)班有哪些區(qū)別
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
以下是查字典數(shù)學(xué)網(wǎng)為大家整理的關(guān)于《高一數(shù)學(xué)知識(shí)點(diǎn)指導(dǎo):二次函數(shù)》的文章,供大家學(xué)習(xí)參考!
二次函數(shù)講解
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2 bx c
(a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時(shí),開口方向向上,a0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2 bx c(a,b,c為常數(shù),a0)
頂點(diǎn)式:y=a(x-h)^2 k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
=b^2-4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
=b^2-4ac0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-bb^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2 bx c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax^2 bx c=0
,,復(fù)讀學(xué)校怎么選擇?
高考失利、高考成績不理想的原因是多方面的、復(fù)雜的,每個(gè)人與每個(gè)人的情況又都是不同的,有的是智力因素的原因,比如基礎(chǔ)知識(shí)不扎實(shí)、知識(shí)網(wǎng)絡(luò)不清晰、學(xué)科能力薄弱、各種應(yīng)具備的能力水平偏低、學(xué)習(xí)方法不得當(dāng)、自學(xué)能力較差等等。有的是非智力因素的原因,毅力、恒心、韌性、克服困難的勇氣等等。當(dāng)然也有的考生始終沒有得到名師的指點(diǎn),學(xué)習(xí)總是在低水平上運(yùn)轉(zhuǎn)。無論是什么原因,考生都要對(duì)自己做認(rèn)真、科學(xué)的解剖、分析。自我分析過程、自我解剖過程就是看病、診斷過程,而高考復(fù)讀的過程就是治病過程,只有診斷正確,治病才能有效。
此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 k,y=ax^2 bx c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式
頂點(diǎn)坐標(biāo)
對(duì)稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2 k
(h,k)
x=h
y=ax^2 bx c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當(dāng)h0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 k的圖象;
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2 k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2 k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2 k的圖象;
因此,研究拋物線y=ax^2 bx c(a0)的圖象,通過配方,將一般式化為y=a(x-h)^2 k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2 bx c(a0)的圖象:當(dāng)a0時(shí),開口向上,當(dāng)a0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2 bx c(a0),若a0,當(dāng)x-b/2a時(shí),y隨x的增大而減小;當(dāng)x-b/2a時(shí),y隨x的增大而增大.若a0,當(dāng)x-b/2a時(shí),y隨x的增大而增大;當(dāng)x-b/2a時(shí),y隨x的增大而減小.
4.拋物線y=ax^2 bx c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2 bx c=0
(a0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△0.圖象與x軸沒有交點(diǎn).當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0.
5.拋物線y=ax^2 bx c的最值:如果a0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2 bx c(a0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2 k(a0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a0).
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
2。設(shè)定義域?yàn)镽的函數(shù)f(x)=log(x-1的絕對(duì)值)(x不等于1),=0(x=1),且關(guān)于x的方程f^(x) bf(x) c=0有7個(gè)不同實(shí)數(shù)解,則b0,c=0